Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Effective electron mass and phonon modes in n-type hexagonal InN

Identifieur interne : 00E426 ( Main/Repository ); précédent : 00E425; suivant : 00E427

Effective electron mass and phonon modes in n-type hexagonal InN

Auteurs : RBID : Pascal:02-0160073

Descripteurs français

English descriptors

Abstract

Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-μm-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m0. The resonantly excited zone center E1 (TO) phonon mode is observed at 477 cm-1 in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A1(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm-1 constitutes a lower limit for the unscreened A1(LO) phonon frequency.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:02-0160073

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Effective electron mass and phonon modes in n-type hexagonal InN</title>
<author>
<name sortKey="Kasic, A" uniqKey="Kasic A">A. Kasic</name>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>Center for Microelectronic and Optical Materials Research, Department of Electrical Engineering, University of Nebraska, Lincoln 68588, Nebraska</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nebraska</region>
</placeName>
<wicri:cityArea>Center for Microelectronic and Optical Materials Research, Department of Electrical Engineering, University of Nebraska, Lincoln 68588</wicri:cityArea>
</affiliation>
<affiliation wicri:level="3">
<inist:fA14 i1="04">
<s1>Institut fur Oberflachenmodifizierung Leipzig e.V., Permoserstrasse 15, 04318 Leipzig, Germany</s1>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut fur Oberflachenmodifizierung Leipzig e.V., Permoserstrasse 15, 04318 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schubert, M" uniqKey="Schubert M">M. Schubert</name>
</author>
<author>
<name sortKey="Saito, Y" uniqKey="Saito Y">Y. Saito</name>
</author>
<author>
<name sortKey="Nanishi, Y" uniqKey="Nanishi Y">Y. Nanishi</name>
</author>
<author>
<name sortKey="Wagner, G" uniqKey="Wagner G">G. Wagner</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Universitat Leipzig, Fakultat fur Physik und Geowissenschaften, Linnestrasse 5, 04103 Leipzig, Germany</s1>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Universitat Leipzig, Fakultat fur Physik und Geowissenschaften, Linnestrasse 5, 04103 Leipzig</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Saxe (Land)</region>
<region type="district" nuts="2">District de Leipzig</region>
<settlement type="city">Leipzig</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">02-0160073</idno>
<date when="2002-03-15">2002-03-15</date>
<idno type="stanalyst">PASCAL 02-0160073 AIP</idno>
<idno type="RBID">Pascal:02-0160073</idno>
<idno type="wicri:Area/Main/Corpus">00F997</idno>
<idno type="wicri:Area/Main/Repository">00E426</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1098-0121</idno>
<title level="j" type="abbreviated">Phys. rev., B, Condens. matter mater. phys.</title>
<title level="j" type="main">Physical review. B, Condensed matter and materials physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Effective mass</term>
<term>Ellipsometry</term>
<term>Experimental study</term>
<term>Hall effect</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Infrared spectra</term>
<term>Phonon spectra</term>
<term>Phonon-plasmon interactions</term>
<term>Raman spectra</term>
<term>Semiconductor epitaxial layers</term>
<term>Wide band gap semiconductors</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>6320</term>
<term>7830</term>
<term>Etude expérimentale</term>
<term>Indium composé</term>
<term>Semiconducteur III-V</term>
<term>Semiconducteur bande interdite large</term>
<term>Masse effective</term>
<term>Spectre phonon</term>
<term>Ellipsométrie</term>
<term>Spectre Raman</term>
<term>Spectre IR</term>
<term>Couche épitaxique semiconductrice</term>
<term>Effet Hall</term>
<term>Interaction phonon plasmon</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-μm-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m
<sub>0</sub>
. The resonantly excited zone center E
<sub>1</sub>
(TO) phonon mode is observed at 477 cm
<sup>-1</sup>
in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A
<sub>1</sub>
(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm
<sup>-1</sup>
constitutes a lower limit for the unscreened A
<sub>1</sub>
(LO) phonon frequency.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1098-0121</s0>
</fA01>
<fA02 i1="01">
<s0>PRBMDO</s0>
</fA02>
<fA03 i2="1">
<s0>Phys. rev., B, Condens. matter mater. phys.</s0>
</fA03>
<fA05>
<s2>65</s2>
</fA05>
<fA06>
<s2>11</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Effective electron mass and phonon modes in n-type hexagonal InN</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>KASIC (A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>SCHUBERT (M.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAITO (Y.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>NANISHI (Y.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>WAGNER (G.)</s1>
</fA11>
<fA14 i1="01">
<s1>Universitat Leipzig, Fakultat fur Physik und Geowissenschaften, Linnestrasse 5, 04103 Leipzig, Germany</s1>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Center for Microelectronic and Optical Materials Research, Department of Electrical Engineering, University of Nebraska, Lincoln 68588, Nebraska</s1>
</fA14>
<fA14 i1="03">
<s1>Faculty of Science and Engineering, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577, Japan</s1>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Institut fur Oberflachenmodifizierung Leipzig e.V., Permoserstrasse 15, 04318 Leipzig, Germany</s1>
</fA14>
<fA20>
<s2>115206-115206-7</s2>
</fA20>
<fA21>
<s1>2002-03-15</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>144 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2002 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>02-0160073</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physical review. B, Condensed matter and materials physics</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Infrared spectroscopic ellipsometry and micro-Raman scattering are used to study vibrational and electronic properties of high-quality hexagonal InN. The 0.22-μm-thick highly n-conductive InN film was grown on c-plane sapphire by radio-frequency molecular-beam epitaxy. Combining our results from the ellipsometry data analysis with Hall-effect measurements, the isotropically averaged effective electron mass in InN is determined as 0.14m
<sub>0</sub>
. The resonantly excited zone center E
<sub>1</sub>
(TO) phonon mode is observed at 477 cm
<sup>-1</sup>
in the ellipsometry spectra. Despite the high electron concentration in the film, a strong Raman mode occurs in the spectral range of the unscreened A
<sub>1</sub>
(LO) phonon. Because an extended carrier-depleted region at the sample surface can be excluded from the ellipsometry-model analysis, we assign this mode to the lower branch of the large-wave-vector LO-phonon-plasmon coupled modes arising from nonconserving wave-vector scattering processes. The spectral position of this mode at 590 cm
<sup>-1</sup>
constitutes a lower limit for the unscreened A
<sub>1</sub>
(LO) phonon frequency.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B60C20</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H30</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>6320</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>7830</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Semiconducteur bande interdite large</s0>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Wide band gap semiconductors</s0>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Masse effective</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Effective mass</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Spectre phonon</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Phonon spectra</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Ellipsometry</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Spectre Raman</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Raman spectra</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Spectre IR</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Infrared spectra</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Couche épitaxique semiconductrice</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor epitaxial layers</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Effet Hall</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Hall effect</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Interaction phonon plasmon</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Phonon-plasmon interactions</s0>
</fC03>
<fN21>
<s1>084</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0212M001234</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 00E426 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 00E426 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:02-0160073
   |texte=   Effective electron mass and phonon modes in n-type hexagonal InN
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024